
Java Date and Time API
Sualeh Fatehi

11

Java Date and
Time API

22

Design Principles
Distinguish between machine and human views
Well-defined and clear purpose
Immutable, thread-safe
Reject null and bad arguments early
Extensible, by use of strategy pattern
Fluent interface with chained methods

33

Instant
Point on a discretized timeline
Stored to nanosecond resolution

long for seconds since epoch, and
int for nanosecond of second

Convert to any date time field using a Chronology

44

Partial
An indication of date or time that cannot identify a
specific, unique instant
Definition uses fields such as year, month, day of
month, and time of day
Commonly used partials, such as LocalDate and
LocalTime are available

Useful partials like MonthDay and YearMonth are
also available

55

Duration
Precise length of elapsed time, in nanoseconds
Does not use date-based constructs like years,
months, and days
Can be negative, if end is before start

66

Period
A length of elapsed time
Defined using calendar fields - years, months, and
days (not minutes and
seconds)
Takes time zones into account for calculation

77

Chronology
Pluggable calendar system
Provides access to date and time fields
Built-in

ISO8601 (default): IsoChronology
Chinese: MinguoChronology
Japanese: JapaneseChronology
Thai Buddhist: ThaiBuddhistChronology
Islamic: HijrahChronology

88

Clock
Gets the current instant using a time-zone
Use instead of System.currentTimeMillis()
Use an alternate clock for testing

99

Testable Code

1010

Packages
java.time - instants, durations, dates, times, time

zones, periods
java.time.format - formatting and parsing
java.time.temporal - field, unit, or adjustment

access to temporals
java.time.zone – support for time zones
java.time.chrono - calendar systems other than

ISO-8601
1111

Consistent Operations
of - static factory, validates input
from - static factory, converts to target class
get - returns part of the state
is - queries the state
with - immutable copy with elements changed
to - converts to another object type
plus , minus - immutable copy after operation

1212

Staying Constant
Day of week, for example DayOfWeek. SUNDAY
Month , for example
LocalDate.of(2014, Month. MAY , 20)

Time units, for example
Instant.now().plus(1, ChronoUnit. DAYS)

Other useful constants, for example
LocalTime.MIDNIGHT // 00:00
LocalTime.NOON // 12:00

1313

Old and New
Only if you have to.. .

Calendar interconversions
toInstant()
toZonedDateTime()
from(ZonedDateTime)

Date interconversions
toInstant()
from(Instant)

1414

Formatting
Format with a DateTimeFormatter instance
Internationalization is supported
Custom formats can be used, including am/pm for
time

1515

Parsing
Parse with a DateTimeFormatter instance
parse(...) methods return a temporal

Use from(...) to convert to a known date or time
type

1616

Temporal Adjusters
Strategy for adjusting a temporal object
Use with(...) to convert to another temporal
object

1717

Built-in Temporal Adjusters
Some useful temporal adjusters are built into
java.time.temporal.TemporalAdjusters

firstDayOfMonth()
firstDayOfYear()
firstInMonth(DayOfWeek)
next(DayOfWeek)
previous(DayOfWeek)

1818

Temporal Queries
Strategy for extracting information from temporals
Externalize the process of querying
Examples

get the time zone in a temporal
check if date is February 29 in a leap year
calculate days until your next birthday

TemporalQueries class has implementations of
common queries

1919

Slides and Code
github.com/sualeh/make-a-date

2020

https://github.com/sualeh/make-a-date
https://github.com/sualeh/make-a-date

